1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
| #include <stdlib.h> #include <stdio.h> #include <stdbool.h>
#define MaxVertexNum 100 #define INFINITY 65535 #define MaxSize 1024
typedef int Vertex; typedef int WeightType; typedef char DataType; bool Visited[MaxVertexNum];
typedef struct GNode *PtrToGNode; typedef PtrToGNode MGraph; struct GNode { int Nv; int Ne; WeightType G[MaxVertexNum][MaxVertexNum]; DataType Data[MaxVertexNum]; };
typedef struct ENode *PtrToENode; typedef PtrToENode Edge; struct ENode { Vertex V1, V2; WeightType Weight; };
MGraph CreateGraph(int VertexNum) { Vertex V, W; MGraph Graph; Graph = (MGraph) malloc(sizeof(struct GNode)); Graph->Nv = VertexNum; Graph->Ne = 0; for (V = 0; V < Graph->Nv; V++) { for (W = 0; W < Graph->Nv; W++) Graph->G[V][W] = INFINITY; } return Graph; }
void InsertEdge(MGraph Graph, Edge E) { Graph->G[E->V1][E->V2] = E->Weight; Graph->G[E->V2][E->V1] = E->Weight; }
MGraph BuildGraph() { MGraph Graph; Edge E; Vertex V; int Nv, i; scanf("%d", &Nv); Graph = CreateGraph(Nv);
scanf("%d", &(Graph->Ne)); if (Graph->Ne != 0) { E = (Edge) malloc(sizeof(struct ENode)); for (i = 0; i < Graph->Ne; i++) { scanf("%d %d %d", &E->V1, &E->V2, &E->Weight); InsertEdge(Graph, E); } } for (V = 0; V < Graph->Nv; V++) { scanf(" %c ", &(Graph->Data[V])); } return Graph; }
bool isEdge(MGraph Graph, Vertex V, Vertex W) { return Graph->G[V][W] < INFINITY ? true : false; }
void Visit(Vertex V) { printf("正在访问顶点%d\n", V); }
void BFS(MGraph Graph, Vertex S, void(*Visit)(Vertex)) { Queue Q; Vertex V, W; Q = CreateQueue(MaxSize); Visit(S); Visited[S] = true; AddQ(Q, S); while (!IsEmpty(Q)) { V = DeleteQ(Q); for (W = 1; W <= Graph->Nv; W++) { if (!Visited[W] && isEdge(Graph, V, W)) { Visit(W); Visited[W] = true; AddQ(Q, W); } } } }
void DFS(MGraph Graph, Vertex V, void(*Visit)(Vertex)) { Visit(V); Visited[V] = true; Vertex W; for (W = 0; W < Graph->Nv; W++) { if (Graph->G[V][W] && !Visited[W]) { DFS(Graph, W, Visit); } } }
Vertex FindMinDist(MGraph Graph, int dist[], int collected[]) { Vertex MinV, V; int MinDist = INFINITY; for (V = 0; V < Graph->Nv; V++) { if (collected[V] = false && dist[V] < MinDist) { MinDist = dist[V]; MinV = V; } } if (MinDist < INFINITY) return MinV; else return -1; }
bool Dijkstra(MGraph Graph, int dist[], int path[], Vertex S) { int collected[MaxVertexNum]; Vertex V, W; for (V = 0; V < Graph->Nv; V++) { dist[V] = Graph->G[S][V]; if (dist[V] < INFINITY) path[V] = S; else path[V] = -1; collected[V] = false; } dist[S] = 0; collected[S] = true; while (1) { V = FindMinDist(Graph, dist, collected); if (V == -1) { break; } collected[V] = true; for (W = 0; W < Graph->Nv; W++) { if (collected[W] == false && Graph->G[V][W] < INFINITY) { if (Graph->G[V][W] < 0) return false; if (dist[V] + Graph->G[V][W] < dist[W]) { dist[W] = dist[V] + Graph->G[V][W]; path[W] = V; } } } } return true; }
bool Floyd(MGraph Graph, WeightType D[][MaxVertexNum], Vertex path[][MaxVertexNum]) { Vertex i, j, k; for (i = 0; i < Graph->Nv; i++) { for (j = 0; j < Graph->Nv; j++) { D[i][j] = Graph->G[i][j]; path[i][j] = -1; } } for (k = 0; k < Graph->Nv; k++) { for (i = 0; i < Graph->Nv; i++) { for (j = 0; j < Graph->Nv; j++) { if (D[i][k] + D[k][j] < D[i][j]) { D[i][j] = D[i][k] + D[k][j]; if (i == j && D[i][j] < 0) return false; path[i][j] = k; } } } } return true; }
|